
An Op Amp Tutorial

(Based on material in the book Introduction to Electroacoustics and Audio Am-
plifier Design, Second Edition - Revised Printing, by W. Marshall Leach, Jr.,
published by Kendall/Hunt, c° 2001.)

An op amp has two inputs and one output. The circuit is designed so that the output voltage
is proportional to the difference between the two input voltages. In general, an op amp can
be modeled as a three-stage circuit as shown in Fig. 1. The non-inverting input is vI1. The
inverting input is vI2. The input stage is a differential amplifier (Q1 and Q2) with a current
mirror load (Q3−Q5). The diff amp tail supply is the dc current source IQ. The second stage
is a high-gain stage having an inverting or negative gain. A capacitor connects the output
of this stage to its input. This capacitor is called the compensating capacitor. Other names
for it are lag capacitor, Miller capacitor, and pole-splitting capacitor. It sets the bandwidth
of the circuit to a value so that the op amp is stable, i.e. so that it does not oscillate. The
output stage is a unity-gain stage which provides the current gain to drive the load.

Figure 1: Op amp model.

If we assume that Q1 and Q2 are matched, that Q3 and Q4 are matched, that base
currents can be neglected, and that the Early effect can be neglected, we can write the
following equation for iO1:

iO1 = iC1 − iC3 = iC1 − iC4 = iC1 − iC2 (1)

But iC1 + iC2 = IQ and iC1 = IQ/2 + ic1. Thus we obtain

iO1 = 2iC1 − IQ = 2ic1 (2)
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Open-Loop Transfer Function

We wish to solve for the transfer function for Vo/Vid, where Vid is the difference voltage
between the two op amp inputs. First, we solve for the current Ic1 as a function of Vid. For
the diff amp, let us assume that the transistors are matched, that IE1 = IE2 = IQ/2, the
Early effect can be neglected, and the base currents are zero. In this case, the small-signal
ac emitter equivalent circuit of the diff amp is the circuit given in Fig. 2(a). In this circuit,
re1 and re2 are the intrinsic emitter resistances given by

re1 = re2 = re =
VT
IE
=
2VT
IQ

(3)

Note that the dc tail supply IQ does not appear in this circuit because it is not an ac source.
From the emitter equivalent circuit, it follows that

Ic1 = Ie1 =
Vid

2 (re +RE)
(4)

where Ic1 = Ie1 because we have assumed zero base currents.

Figure 2: Circuit for calculating Ie1. (b) Circuit for calculating Vo.

Figure 2(b) shows the equivalent circuit which we use to calculate Vo. We assume that
Req is the effective load resistance on the current 2Ic1. In this case, the current which flows
through the compensating capacitor Cc is given by

Io1 = 2Ic1 +
Vo1
Req

=
Vid

re +RE
− Vo2
KReq

(5)

where we have used Eq. (4) and the relation Vo1 = −Vo2/K. The voltage Vo2 is given by

Vo2 = Vo1 +
Io1
Ccs

=
−Vo2
K

+

·
Vid

re +RE
− Vo2
KReq

¸
1

Ccs
(6)

If we assume that the output stage has a gain that is approximately unity, then Vo ' Vo2.
Let G (s) = Vo/Vid. It follows from Eq. (6) that G (s) is given by

G (s) =
Vo
Vid

' Vo2
Vid

=
KReq
re +RE

× 1

1 + (1 +K)ReqCcs
(7)

This is of the form

G (s) =
A

1 + s/ω1
(8)

where A and ω1 are given by

A =
KReq
re +RE

ω1 = 2πf1 =
1

(1 +K)ReqCc
(9)
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Figure 3: Asymptotic Bode magnitude plots. (a) Without feedback. (b) With feedback.

Gain Bandwidth Product

The asymptotic Bode magnitude plot for |G (jω)| is shown in Fig. 3(a). Above the pole
frequency ω1, the plot has a slope of −1 dec/dec or −20 dB/dec. The frequency at which
|G (jω)| = 1 is called the unity-gain frequency or the gain-bandwidth product. It is labeled
ωx in the figure and is given by

ωx = 2πfx = Aω1 =
K

1 +K

1

re +RECc
' 1

(re +RE)Cc
(10)

where the approximation holds for K À 1. It follows that an alternate expression for G (s)
is

G (s) =
A

1 + sA/ωx
(11)

For maximum bandwidth, fx should be as large as possible. However, if fx is too large,
the op amp can oscillate. A value of 1 MHz is typical for general purpose op amps.

Example 1 An op amp is to be designed for fx = 4 MHz and IQ = 50 µA. If RE = 0,
calculate the required value for Cc.

Solution. Cc = 1/ (2πfxre) = IQ/ (4πfxVT ) = 38.4 pF, where we assume that VT = 0.0259
V.

Slew Rate

The op amp slew rate is the maximum value of the time derivative of its output voltage. In
general, the positive and negative slew rates can be different. The simple model of Fig. 1
predicts that the two are equal so that we can write

−SR ≤ dvO
dt
≤ +SR (12)

where SR is the slew rate. To solve for it, we use Eqs. (5) and (6) to write

Vo2 = Vo1 +
Io1
Ccs

=
−Vo2
K

+

µ
2Ic1 +

−Vo2
KReq

¶
1

Ccs
(13)
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This can be rearranged to obtain

sVo2

·
1 +

1

K

µ
1 +

1

ReqCc

¶¸
=
2Ic1
Cc

(14)

If we assume that K is large and let Vo2 ' Vo, this equation reduces to
sVo ' 2Ic1

Cc
(15)

The s operator in a phasor equation becomes the d/dt operator in a time-domain equation.
Thus we can write

dvo
dt
=
2ic1
Cc

(16)

It follows that the slew rate is determined by the maximum value of ic1. The total collector
current in Q1 is the sum of the dc value plus the small-signal ac value. Thus we can write
iC1 = IQ/2 + ic1. This current has the limits 0 ≤ iC1 ≤ IQ. It follows that the small-signal
ac component has the limits −IQ/2 ≤ ic1 ≤ IQ/2. Thus we can write

−IQ
Cc
≤ dvo
dt
≤ +IQ

Cc
(17)

It follows that the slew rate is given by

SR =
IQ
Cc

(18)

Example 2 Calculate the slew rate of the op amp of Example 1.

Solution. SR = IQ/Cc = 1.30 V/µs.

Relations between Slew Rate and Gain-Bandwidth Product

If Cc is eliminated between Eqs. (10) and (18), we obtain the relation

SR = 2πfxIQ (re +RE) = 4πfxVT

µ
1 +

IQRE
2VT

¶
(19)

This equation clearly shows that the slew rate is fixed by the gain-bandwidth product if
RE = 0. If RE > 0, the slew rate and gain bandwidth product can be specified independently.

Example 3 Emitter resistors with the value RE = 3 kΩ are added to the input diff amp in
the op amp of Example 1. If fx is to be held constant, calculate the new value of the slew
rate and the new value of Cc.

Solution. SR = 2πfxIQ (re +RE) = 5.07 V/µs. Cc = IQ/SR = 9.86 pF. The slew rate is
greater by a factor of 3.9 and Cc is smaller by the same factor.

The above example illustrates how the slew rate of an op amp can be increased without
changing its gain-bandwidth product. When RE is added, ωx decreases. To make ωx equal
to its original value, Cc must be decreased, and this increases the slew rate. It can be seen
from Eq. (19) that the slew rate can also be increased by increasing IQ. However, this causes
ωx to increase. To make ωx equal to its original value, RE must also be increased. Therefore,
the general rule for increasing the slew rate is to either decrease Cc, increase IQ, or both.
All of these make ωx increase. To bring ωx back down to its original value, RE must be
increased. The change in RE does not affect the slew rate.
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Figure 4: (a) Amplifier with feedback. (b) Amplifier with feedback preceded by a low-pass
filter.

Closed-Loop Transfer Function

Figure 4(a) shows the op amp with a two resistor voltage divider connected as a feedback
network. The output voltage can be written

Vo = G (s) (Vi − Vf) = G (s) (Vi − bVo) (20)

where b is the gain of the voltage divider given by

b =
R1

R1 +RF
(21)

Note that 0 ≤ b ≤ 1. Eq. (20) can be solved for Vo/Vi to obtain
Vo
Vi
=

G (s)

1 + bG (s)
=

Af
1 + s/ω1f

(22)

where Eq. (11) is used for G (s). The dc gain Af and the pole frequency ω1f are given by

Af =
A

1 + bAf
' 1

b
(23)

ω1f = 2πf1f = ωx
1 + bA

A
=

ωx
Af

' bωx (24)

where the f in the subscript implies “with feedback” and the approximations assume that
bAÀ 1.
It can be seen from these equations that

Afω1f = Aω1 = ωx (25)

Fig. 3(b) shows the Bode plot for |Vo/Vi| for two values of Af . As b is increased, Af
decreases and the bandwidth ω1f increases so that the product of the two remain constant.
This illustrates why ωx is called the gain-bandwidth product.

Example 4 An op amp has the gain bandwidth product fx = 8 MHz. Calculate the upper
−3 dB frequency fu if the op amp is operated at a voltage gain of 21.

Solution. The upper −3 dB frequency is equal to the pole frequency of the closed-loop
transfer function. Thus fu = f1f = fx/Af = 381 kHz.

5



Figure 5: (a) No slewing step response. (b) Step response with slewing. (c) Differential
input voltage.

Transient Response

Let the input voltage to the op amp in Fig. 4(a) be a step of amplitude V1. We can write
vI (t) = V1u (t), where u (t) is the unit step function. The Laplace transform of vI (t) is
Vi (s) = V1/s. The Laplace transform of the output voltage is given by

Vo (s) =
V1
s

Af
1 + s/ω1f

(26)

The time domain output voltage is obtained by taking the inverse Laplace transform to
obtain

vO (t) = AfV1 [1− exp (−ω1f t)] u (t) (27)

A plot of vO (t) is shown in Fig. 5(a).
The maximum time derivative of vO (t) occurs at t = 0 and is given by

dvO
dt

¯̄̄̄
max

= AfV1
d

dt
{[1− exp (−ω1f t)] u (t)}|t=0 =

Af
ω1f

V1 = ωxV1 (28)

If the derivative exceeds the slew rate of the op amp , the output voltage will be distorted
as shown in Fig. 5(b), where the non-slewing response is shown by the dashed line. The
maximum value of V1 before the op amp slews is given by

V1max =
SR

ωx
=
SR

2πfx
= IQ (re +RE) (29)

Example 5 Calculate the maximum value of V1 for the op amps of Examples 2 and 3.

Solution. For Example 1, V1max = SR/ωx = 51.7 mV. For Example 2, V1max = 202 mV.
This is greater by about a factor of 3.9, i.e. the same as the ratio of the two slew rates.

Input Stage Overload

For the step input signal to the op amp with feedback in Fig. 4(a), the differential input
voltage is given by

vID (t) = vI (t)− bvO (t) = V1
1 + bA

[1 + bA0 exp (−bωxt)] u (t) (30)
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It follows that vID (0) = V1 and vID (∞) = V1/ (1 + bA). A plot of vID (t) is shown in Fig.
5(c). The peak voltage occurs at t = 0. If the op amp is not to slew, the diff amp input
stage must not overload with this voltage.
If base currents are neglected, the emitter and collector currents in Q1 and Q2 can be

written

iE1 = iC1 = IS exp

µ
vBE1
VT

¶
iE2 = iC2 = IS exp

µ
vBE2
VT

¶
(31)

where IS is the BJT saturation current. The differential input voltage can be written

vID = (vBE1 − vBE2) + (iE1 − iE2)RE (32)

With the relation iE2 = IQ − iE1, these equations can be solved to obtain

vID = VT ln

µ
iC1

IQ − iC1

¶
+ (2iC1 − IQ)RE (33)

The same equation holds for iC2 except vID is replaced with −vID.
Both iC1 and iC2 must satisfy the inequality 0 ≤ i ≤ IQ. At either limit of this inequality,

one transistor in the diff amp is cut off. Let us consider the diff-amp active range to be the
range for which iC1 and iC2 satisfy 0.05IQ ≤ i ≤ 0.95IQ. This is the 5% to 95% range for
the currents. When the diff amp is operated in this range, it follows from Eq. (33) that vID
must satisfy

−vID(max) ≤ vID ≤ −vID(max) (34)

where vID(max) is given by
vID(max) = VT ln 19 + 0.9IQRE (35)

If vID lies in this range, neither transistor in the diff amp can cut off and the op amp cannot
exhibit slewing.

Example 6 Calculate vID(max) for IQ = 50 µA for RE = 0 and for RE = 3 kΩ.

Solution. For RE = 0, we have vID(max) = VT ln 19 = 76.3 mV. For RE = 3000, vID(max) =
76.3 mV +0.9 × 50 × 10−6 × 3000 = 211 mV. These values are greater than the values of
V1max calculated in Example 5 because the analysis here is based on the large signal behavior
of the BJT.

Full Power Bandwidth

Figure 6 shows the output voltage of an op amp with a sine wave input for two cases, one
where the op amp is not slewing and the other where the op amp is driven into full slewing.
The full slewing waveform is a triangle wave. The slew-limited peak voltage is given by the
slope multiplied by one-fourth the period, i.e.

VP slew = SR× T
4
=
SR

4f
(36)

where T = 1/f . When the op amp is driven into full slewing, an increase in the amplitude
of the input signal causes no change in the amplitude of the output signal. If the frequency
is doubled, the amplitude of the output signal is halved.
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Figure 6: Non-slewing and full slewing output voltage waveforms.

Let the input voltage to the op amp be a sine wave. If the op amp does not slew and
is not driven into peak clipping, the output voltage can be written vO (t) = VP sinωt. The
time derivative is given by dvO/dt = ωVP cosωt. The maximum value of |dvO/dt| occurs at
ωt = nπ, where n is an integer, and is given by |dvO/dt|max = ωVP . For a physical op amp
, this cannot exceed the slew rate, i.e. ωVP < SR. It follows that the maximum frequency
that the op amp can put out the sine wave without slewing is given by

fmax =
SR

2πVP
(37)

Conversely, the peak output voltage without slewing is given by

VP (max) =
SR

2πf
(38)

Let Vclip be the op amp clipping voltage at midband frequencies. If an op amp is driven
at this level and the frequency is increased, the op amp will eventually slew and the maxi-
mum output voltage will decrease as the frequency is increased. The full power bandwidth
frequency fFPBW is defined as the highest frequency at which the op amp can put out a sine
wave with a peak voltage equal to Vclip. It is given by

fFPBW =
SR

2πVclip
(39)

Figure 7 shows the peak output voltage versus frequency for a sine wave input signal. At
low frequencies, the peak voltage is limited to the op amp clipping voltage Vclip. As frequency
is increased, the peak voltage becomes inversely proportional to frequency when the op amp
is driven into full slewing and is given by SR/4f . The figure also shows the peak voltage
below which the op amp does not slew. It is given by SR/2πf .

Example 7 The op amps of Examples 2 and 3 have clipping voltages of ±13 V. Calculate
the full power bandwidth frequency if the op amps are not to slew at maximum output.

Solution. For the op amp of Example 2, fFPBW = 1.3× 106/ (2π13) = 15.9 kHz. For the
op amp of Example 3, fFPBW = 5.07× 106/ (2π13) = 62.1 kHz.
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Figure 7: Maximum sine wave output voltage as a function of frequency.

Effect of an Input Low-Pass Filter

Step Input Signal

Figure 4(b) shows the op amp with a low-pass filter preceding its input. By voltage division,
the transfer function for the voltage gain of the filter is

Va
Vi
=

1/Cs

R2 + 1/Cs
=

1

1 +R2Cs
=

1

1 + s/ωa
(40)

where ωa = 1/R2C. It follows that the overall transfer function for voltage gain of the op
amp and filter is

Vo
Vi
=

Af
(1 + s/ωa) (1 + s/ω1f)

(41)

The transfer function for the differential input voltage is given by

Vid
Vi
=
Va − bVo
Vi

=
Va
Vi

µ
1− bVo

Va

¶
(42)

With the aid of Eqs. (22) — (24), (40), and (41), this can be reduced to

Vid
Vi
=

Af (1 + s/ω1)

(1 + s/ωa) (1 + s/ω1f )
(43)

Let the input voltage be a step of amplitude V1. Its Laplace transform is Vi (s) = V1/s.
It follows that the Laplace transform for Vid is

Vid (s) =
AfV1 (1 + s/ω1)

s (1 + s/ωa) (1 + s/ω1f )
(44)

For the case ωa 6= ω1f , the inverse transform of this is

vID (t) = V1

·
ω1
ω1f

+
ωa − ω1
ω1f − ωa

exp (−ωat)− ωa
ω1f

× ω1f − ω1
ω1f − ωa

exp (−ω1f t)
¸

(45)

The maximum value of vID (t) occurs at the time t1 which satisfies dvID (t1) /dt = 0. It
is straightforward to show that t1 is given by

t1 =
1

ω1f − ωa
ln

µ
ω1f − ω1
ωa − ω1

¶
(46)
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Figure 8: Plot of vID as a function of t for Example 8.

The value of vID (t1) is

vID (t1) = V1

"
ω1
ω1f

+

µ
1− ω1

ω1f

¶µ
ωa − ω1
ω1f − ω1

¶ω1f/(ω1f−ωa)
#

(47)

If the diff amp is not to leave its linear region, this voltage must not exceed vIDmax given by
Eq. (35). When this is true, the op amp cannot slew with the step signal.

Example 8 An op amp with clipping voltages of ±13 V has the open-loop bandwidth f1 = 5
Hz, the closed-loop gain Af = 10, and the closed-loop bandwidth f1f = 100 kHz. The op
amp is preceded by a low-pass filter having a bandwidth fa = 50 kHz. The op amp input is a
voltage step which drives the output to the clipping level. Calculate t1 and vID (t1).

Solution. The amplitude of the input step is V1 = 13/10 = 1.3 V. Eqs. (46) and (47)
give t1 = 13.9 µs and vID (t1) = 0.325 V. A plot of vID (t) versus t is shown in Fig. 8. The
low-pass filter has reduced the peak overload of the diff amp by the factor 1.3/0.325 = 4 or
by 12 dB.

Example 9 The op amp of Example 8 has a diff amp that is biased at IQ = 50 µA. Calculate
the minimum value of RE if the diff amp is not to leave its linear region for the value of
vID (t1). Assume that Cc is adjusted so that f1f does not change with RE.

Solution. In Eq. (35), we let vIDmax = vID (t1) = 0.325 V. Thus RE is given by RE =
(0.325− VT ln 19) /0.9IQ = 5.53 kΩ, where we have assumed that VT = 0.0259 V.

Square-Wave Input Signal

The transient examples that we have looked at so far assume that the op amp input voltage
is a step and that the initial value of the output voltage is zero. Transient response measure-
ments on op amps are usually made with a square-wave input signal, not a step. A square
wave can be written as a series of steps. Thus it may seem that the results obtained for the
step can be applied directly for the square wave. This is true only if the calculations are
modified to account for the non-zero initial value of the op amp output voltage.
Let a square wave be applied to an op amp that switches from its negative level to its

positive level at t = 0. The input and output voltage waveforms are illustrated in Fig. 9(a),
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Figure 9: (a) Square wave input and output voltages. (b) JFET diff amp input stage.

where it is assumed that no low-pass filter precedes the op amp input. At t = 0−, let the
input voltage be −V1. The output voltage is −AfV1. At t = 0+, the input voltage switches to
+V1, but the output voltage is still at −AfV1. Thus the differential input voltage at t = 0+
is vID = V1 − vO/Af = 2V1.
It follows from this result that the results obtained for the step input apply to the square

wave input if the amplitude of the step is doubled. This is equivalent to saying that the
amplitude of the step must equal the total change in voltage of the square wave between its
negative and positive levels. The same conclusion holds when the op amp is preceded by a
low-pass filter.

JFET Diff Amp

We have seen above that the addition of emitter resistors to the diff amp transistors reduces
the gain bandwidth product of the op amp . If the compensation capacitor is then reduced
to bring the gain bandwidth product back up to its original value, the slew rate is increased.
Another method of accomplishing this is to replace the BJTs with JFETs. A JFET diff
amp is shown in Fig. 9(b). For a specified bias current, the JFET has a much lower
transconductance than the BJT. In effect, this makes it look like a BJT with emitter resistors.
For this reason, resistors in series with the JFET sources are omitted in the figure. The
analysis in this section also applies to the MOSFET diff amp.
The JFET drain current can be written

iD = IDSS

µ
1− vGS

VTO

¶2
(48)

where IDSS is the drain-source saturation current (the value of iD with vGS = 0), VTO is the
threshold voltage (which is negative), vGS is the gate to source voltage, and VTO ≤ vGS ≤ 0.
For the drain current in either JFET in the diff amp to be in the range of 0.05IQ to 0.95IQ,
the maximum differential input voltage is given by

vIDmax = |VTO|
³√
0.95−

√
0.05

´r IQ
IDSS

= 0.751 |VTO|
r

IQ
IDSS

(49)

The JFET transconductance is given by

gm =
∂ID
∂VGS

=
2IDSS
−VTO

µ
1− VGS

VTO

¶
=

2

−VTO
p
IDIDSS (50)
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To convert a formula derived for the op amp with a BJT diff amp into a corresponding
formula for the JFET diff amp, the BJT intrinsic emitter resistance re is replaced with 1/gm
for the JFET. Thus the gain bandwidth product of the op amp with the JFET diff amp is
given by

ωx = 2πfx =
gm
Cc

(51)

where it is assumed that there is no added resistor in series with the source leads, i.e. RE = 0.
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